*PUERTO PARALELO
La función normal del puerto consiste en transferir datos a una impresora mediante 8 líneas de salida de datos, usando las señales restantes como control de flujo. Sin embrago, puede ser usado como un puerto E/S de propósito general por cualquier dispositivo o aplicación que se ajuste a sus posibilidades de entrada/salida.
Descripción del conector físico
La conexión del puerto paralelo al mundo exterior se realiza mediante un conector hembra DB25. Observando el conector de frente y con la parte que tiene mayor número de pines hacia arriba, se numera de derecha a izquierda y de arriba a abajo, del 1 al 13 (arriba) y del 14 al 25 (abajo).
![http://cfievalladolid2.net/tecno/cyr_01/control/images/puerto15.gif](file:///C|/Users/Pilar/AppData/Roaming/Macromedia/Dreamweaver 8/OfficeImageTemp/clip_image002_0000.gif)
TARJETA DE PUERTO PARALELO
En este conector:
-
8 líneas (pines) son para salida de datos (bits de DATOS). Sus valores son únicamente modificables a través de software, y van del pin 2 (dato 0, D0) al pin 9 (dato 7, D7).
-
5 líneas son de entrada de datos (bits de ESTADO), únicamente modificables a través del hardware externo. Estos pines son: 11, 10, 12, 13 y 15, del más al menos significativo.
-
4 líneas son de control (bits de CONTROL), numerados del más significativo al menos: 17, 16, 14 y 1. Habitualmente son salidas, aunque se pueden utilizar también como entradas y, por tanto, se pueden modificar tanto por software como por hardware.
-
las líneas de la 18 a la 25 son la tierra.
*PUERTO SERIAL
Los puertos seriales (también llamados RS-232, por el nombre del estándar al que hacen referencia) fueron las primeras interfaces que permitieron que los equipos intercambien información con el "mundo exterior". El término serial se refiere a los datos enviados mediante un solo hilo: los bits se envían uno detrás del otro (consulte la sección sobre transmisión de datos para conocer los modos de transmisión).
Originalmente, los puertos seriales sólo podían enviar datos, no recibir, por lo que se desarrollaron puertos bidireccionales (que son los que se encuentran en los equipos actuales). Por lo tanto, los puertos seriales bidireccionales necesitan dos hilos para que la comunicación pueda efectuarse.
La comunicación serial se lleva a cabo asincrónicamente, es decir que no es necesaria una señal (o reloj) de sincronización: los datos pueden enviarse en intervalos aleatorios. A su vez, el periférico debe poder distinguir los caracteres (un carácter tiene 8 bits de longitud) entre la sucesión de bits que se está enviando.
Ésta es la razón por la cual en este tipo de transmisión, cada carácter se encuentra precedido por un bit de ARRANQUE y seguido por un bit de PARADA. Estos bits de control, necesarios para la transmisión serial, desperdician un 20% del ancho de banda (cada 10 bits enviados, 8 se utilizan para cifrar el carácter y 2 para la recepción).
Los puertos seriales, por lo general, están integrados a la placa madre, motivo por el cual los conectores que se hallan detrás de la carcasa y se encuentran conectados a la placa madre mediante un cable, pueden utilizarse para conectar un elemento exterior. Generalmente, los conectores seriales tienen 9 ó 25 clavijas y tienen la siguiente forma (conectores DB9 y DB25 respectivamente):
PUERTO SERIAL
Un PC posee normalmente entre uno y cuatro puertos seriales.
*PUERTO USB
Un puerto USB es una entrada o acceso para que el usuario pueda compartir información almacenada en diferentes dispositivos como una cámara de fotos, un pendrive, entre otros, con un computador. Las siglas USB quieren decir Bus de Serie Universal en inglés.
Trabaja como interfaz para transmisión de datos y distribución de energía, que ha sido introducida en el mercado de PC´s y periféricos para mejorar las lentas interfaces serie (RS-232) y paralelo. Esta interfaz de 4 hilos, 12 Mbps y "plug and play", distribuye 5V para alimentación, transmite datos y está siendo adoptada rápidamente por la industria informática.
Es un bus basado en el paso de un testigo, semejante a otros buses como los de las redes locales en anillo con paso de testigo y las redes FDDI . El controlador USB distribuye testigos por el bus . El dispositivo cuya dirección coincide con la que porta el testigo responde aceptando o enviando datos al controlador . Este también gestiona la distribución de energía a los periféricos que lo requieran .
Emplea una topología de estrellas apiladas que permite el funcionamiento simultáneo de 127 dispositivos a la vez . En la raíz o vértice de las capas, está el controlador anfitrión o host que controla todo el tráfico que circula por el bus . Esta topología permite a muchos dispositivos conectarse a un único bus lógico sin que los dispositivos que se encuentran más abajo en la pirámide sufran retardo . A diferencia de otras arquitecturas, USB no es un bus de almacenamiento y envío, de forma que no se produce retardo en el envío de un paquete de datos hacia capas inferiores .
El sistema de bus serie universal USB consta de tres componentes:
-
Controlador
-
Hubs o Concentradores
-
Periféricos
-
Reside dentro del PC y es responsable de las comunicaciones entre los periféricos USB y la CPU del PC . Es también responsable de la admisión de los periféricos dentro del bus, tanto si se detecta una conexión como una desconexión . Para cada periférico añadido, el controlador determina su tipo y le asigna una dirección lógica para utilizarla siempre en las comunicaciones con el mismo . Si se producen errores durante la conexión, el controlador lo comunica a la CPU, que, a su vez, lo transmite al usuario . Una vez se ha producido la conexión correctamente, el controlador asigna al periférico los recursos del sistema que éste precise para su funcionamiento .
-
El controlador también es responsable del control de flujo de datos entre el periférico y la CPU . Concentradores o hubs
-
Son distribuidores inteligentes de datos y alimentación, y hacen posible la conexión a un único puerto USB de 127 dispositivos . De una forma selectiva reparten datos y alimentación hacia sus puertas descendentes y permiten la comunicación hacia su puerta de retorno o ascendente . Un hub de 4 puertos, por ejemplo, acepta datos del PC para un periférico por su puerta de retorno o ascendente y los distribuye a las 4 puertas descendentes si fuera necesario .
-
Los concentradores también permiten las comunicaciones desde el periférico hacia el PC, aceptando datos en las 4 puertas descendentes y enviándolos hacia el PC por la puerta de retorno .
-
Además del controlador, el PC también contiene el concentrador raíz . Este es el primer concentrador de toda la cadena que permite a los datos y a la energía pasar a uno o dos conectores USB del PC, y de allí a los 127 periféricos que, como máximo, puede soportar el sistema . Esto es posible añadiendo concentradores adicionales . Por ejemplo, si el PC tiene una única puerta USB y a ella le conectamos un hub o concentrador de 4 puertas, el PC se queda sin más puertas disponibles . Sin embargo, el hub de 4 puertas permite realizar 4 conexiones descendentes . Conectando otro hub de 4 puertas a una de las 4 puertas del primero, habremos creado un total de 7 puertas a partir de una puerta del PC . De esta forma, es decir, añadiendo concentradores, el PC puede soportar hasta 127 periféricos USB .
-
La mayoría de los concentradores se encontrarán incorporados en los periféricos . Por ejemplo, un monitor USB puede contener un concentrador de 7 puertas incluido dentro de su chasis . El monitor utilizará una de ellas para sus datos y control y le quedarán 6 para conectar allí otros periféricos .
TARJETA DE PUERTOS USB
Hernandez Murillo Ernesto
Flores Roa Eduardo
García Alanis Hector
Zapata Eduardo Daniel
Torres Bermudez Esmeralda
I-514 Mesa: 6
Flores Roa Eduardo
García Alanis Hector
Zapata Eduardo Daniel
Torres Bermudez Esmeralda
I-514 Mesa: 6
No hay comentarios:
Publicar un comentario